

Compound Data Sheet O-Ring Division United States

MATERIAL REPORT

Date:6/8/2010

TITLE: Evaluation of Parker silicone compound SM355-75 to the qualification requirements of AMS 7267.

- **PURPOSE:** To qualify this material to this specification.
- **CONCLUSION:** Parker compound SM355-75 meets the qualification requirements of AMS 7267.

Temperature Range: -60 to 450°F

Recommended For: Hot air, dilute acids, bases, weather and ozone, cold and hot water, alcohols, glycols.

Not Recommended For: Oils and greases made from petroleum or synthetic hydrocarbon base stock, aromatic hydrocarbon fuels and solvents, aliphatic solvents, chlorinated hydrocarbon solvents, dynamic applications.

Parker O-Ring Division 2360 Palumbo Drive Lexington, Kentucky 40509 (859) 269-2351

REPORT DATA

Date: 6/8/2010 Batch No.: 0031003092 Compound: SM355-75

<u>Original Physical Properties</u> Hardness, Shore A Tensile Strength, psi min Elongation at Break, % min Specific Gravity Corrosion	ASTM Test <u>Method</u> D2240 D1414 D1414 D297 D1414	Pass / Fail Limit 75 +/- 5 650 125 Report Nil	Results (AS568-214) 75 791 189 1.34 Nil
Dry Heat Resistance <u>70 Hrs. @ 250° C</u> Hardness Change, pts. Tensile Strength Change, % max Elongation Change, % max	D573 D573 D573	-5 to +10 -30 -45	+4 -30 -35
Compression Set <u>22 Hrs. @ 225° C</u> % of Original Deflection, max 1.68 to 2.79 mm, inclusive Over 2.79 mm	D395 Method B	70 60	32
Fluid Immersion, IRM901 Oil <u>70 Hrs. @ 175° C</u> Hardness Change, pts. Tensile Strength Change, % max Elongation Change, % max Volume Change, %	D471 D471 D471 D471	-10 to +5 -30 -30 0 to +15	-4 -20 -21 +8
Low Temperature Resistance TR-10 point, °C, max	D1329	-42	-43
Compression Deflection at 20% Deflection At 20 to 30° C, psi min	D575	Pass / Fail Limit 200	Results (platen) 331
At 250° C, psi min Polymer Reversion (ARDL) Original Hardness, Shore A Hardness Change, Shore A max	D575 AMS 7267 4.5.2	150 75 +/- 5 -10	237 77 -1

Purchaser use only. Reproduce only in full. Data pertains to items referenced only. The recording of false, fictitious or fraudulent statements or entries on this report may be punishable as a felony under federal law.